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Abstract

Despite the outstanding performance of large
language models (LLMs) across various NLP
tasks, hallucinations in LLMs–where LLMs
generate inaccurate responses–remains as a
critical problem as it can be directly con-
nected to a crisis of building safe and reli-
able LLMs. Uncertainty estimation is pri-
marily used to measure hallucination levels
in LLM responses so that correct and incor-
rect answers can be distinguished clearly. This
study proposes an effective uncertainty esti-
mation approach, Clustering-based semantic
consistency (Cleanse). Cleanse quantifies the
uncertainty with the proportion of the intra-
cluster consistency in the total consistency be-
tween LLM hidden embeddings which contain
adequate semantic information of generations,
by employing clustering. The effectiveness of
Cleanse for detecting hallucination is validated
using four off-the-shelf models, LLaMA-7B,
LLaMA-13B, LLaMA2-7B and Mistral-7B and
two question-answering benchmarks, SQuAD
and CoQA.

1 Introduction

Recent advances in LLMs have dramatically en-
hanced their performance across a wide spectrum
of downstream tasks, from translation and summa-
rization to question answering (QA) and dialogue
generation. These models now produce fluent,
contextually aware outputs that often rival human-
like language generation. Despite these remark-
able capabilities, a persistent and critical limitation
remains: LLMs frequently generate hallucinated
outputs—responses that may appear coherent and
plausible but are in fact factually incorrect or un-
supported by any underlying knowledge (Ji et al.,
2023; Huang et al., 2025). These hallucinations are
particularly insidious because they are difficult for
users, especially non-experts, to detect, potentially
leading to serious consequences in high-stakes ap-
plications. This challenge becomes especially pro-

nounced in QA tasks, where correctness can be
objectively verified. Unlike open-ended tasks such
as dialogue or summarization—where diverse out-
puts can still be acceptable—QA typically demands
precise and verifiable answers (Zhang et al., 2023).
As a result, even minor hallucinations can signifi-
cantly degrade task accuracy. When hallucinated
outputs are presented in such contexts, they can
mislead users, erode trust in AI systems, and com-
promise the reliability of LLM-based applications
(Zhang et al., 2023). Ensuring the factual consis-
tency of outputs is thus not only a technical concern
but also a crucial factor for user safety and system
credibility.

To address these challenges, researchers have
proposed a variety of solutions, including dataset
refinement, retrieval-augmented generation (RAG),
and uncertainty estimation. Each of these ap-
proaches targets hallucination from a different an-
gle, offering complementary benefits. One ap-
proach is dataset refinement, which involves care-
fully reviewing and editing training data to improve
model accuracy. While this can help reduce errors,
it is also highly labor-intensive and difficult to scale.
Another strategy is retrieval-augmented generation
(RAG). By retrieving external knowledge during
the generation process, RAG can provide more fac-
tually grounded answers. However, this approach
requires building more complex and potentially
fragile pipelines that demand significant computa-
tional resources (Ji et al., 2023; Es et al., 2024). In
contrast, uncertainty estimation offers a lightweight
and scalable alternative by assessing the model’s
confidence in its own outputs. Importantly, this
method does not require additional external knowl-
edge sources or significant changes to the model
architecture. Instead, it provides users with inter-
pretable confidence signals that can help identify
potentially unreliable responses (Lin et al., 2022a).
In QA and related tasks, these confidence metrics
can serve as a critical line of defense against the



unintended consequences of hallucination.
Within natural language processing (NLP), un-

certainty estimation is typically grounded in the
assumption that models are more consistent when
confident. That is, when a model is certain about
its answer, repeated generations will tend to con-
verge; conversely, a lack of confidence often results
in high output variability. To assess uncertainty in
generated outputs, researchers have proposed meth-
ods that operate at various linguistic levels—token
and sentence—each providing distinct advantages
based on the desired granularity of analysis. Token-
level metrics such as Perplexity (Ren et al., 2023),
LN-Entropy (Malinin and Gales, 2020), and Lex-
ical Similarity (Lin et al., 2022b) are well-suited
for capturing fine-grained variations within specific
output spans, particularly within answer segments
of a sentence. In contrast, Rabinovich et al. (2023)
evaluates uncertainty at the sentence-level, making
it more appropriate for assessing broader linguis-
tic properties such as overall semantic sentiment.
While analyses at both token and sentence levels of-
fer valuable insights, semantic aspect of natural lan-
guage is more significant when deciding whether
two texts with different form are equivalent or not.
This is because the inherent variability of natural
language data leads to semantic equivalence, where
diverse expressions can convey the same meaning
(Kuhn et al., 2023). Even if two texts use different
tokens and syntactic structures, it is reasonable to
consider them consistent as long as their seman-
tics are the same. However, sentence-level simi-
larity measures are not without limitations. Rabi-
novich et al. (2023) calculates all pairwise similari-
ties and they take the average of these similarities
equally. It might lead to an incorrect result that
a few highly similar sentence pairs disproportion-
ately influence the overall uncertainty score. This
can mask the presence of semantically divergent
outputs and falsely suggest high consistency.

To overcome these challenges and make
metric more precise, we introduce Clustering-
based Semantic Consistency (Cleanse)—a novel
sentence-level uncertainty estimation technique de-
signed to more reliably detect hallucinations in gen-
erative models. Cleanse leverages bi-directional
natural language inference (NLI) to determine
whether pairs of generated responses entail one
another, forming semantically equivalent clusters
with greater precision and excluding any connec-
tions that do not meet entailment criteria. We then
measure the internal connectivity of these clusters

by computing the cosine similarity of their hid-
den representations as a proxy for semantic consis-
tency, while the distances between clusters provide
signals for semantic divergence. In other words,
dense intra-cluster links indicate semantic agree-
ment, while high inter-cluster links suggest uncer-
tainty. Thus, we estimate uncertainty by leveraging
the similarity between embeddings within the same
clusters as the degree of consistency. By prioritiz-
ing these semantically meaningful clusters—rather
than relying on simple average similarity—Cleanse
offers more calibrated and trustworthy uncertainty
estimates. Experiments on QA benchmarks further
demonstrate that Cleanse consistently outperforms
existing token- and sentence-level methods in de-
tecting hallucinations. We also verify that our key
concept, which considers the degree of inter-cluster
links (i.e., inter-cluster similarity) as penalty and
degree of intra-cluster links (i.e., intra-cluster simi-
larity) as consistency between outputs, contributes
to improving hallucination detection performance
and the robustness of Cleanse.

2 Related Work

There are several related works about uncertainty
estimation with various perspectives. The re-
searchers fine-tune the model to ensure that the
estimated uncertainty aligns with the actual un-
certainty (Lin et al., 2022a). Application of per-
turbation module and aggregation module to cal-
ibrate uncertainty is an effective setting as well.
(Gao et al., 2024). Semantic entropy is the entropy
across groups clustered by semantically-equivalent
outputs (Kuhn et al., 2023). Shifting Attention to
Relevance (SAR) shifts weights from semantically-
irrelevant tokens to semantically-relevant tokens so
that probability of relevant tokens contributes to
uncertainty quantification more significantly (Duan
et al., 2023). Recently, there are some approaches
using LLM’s internal states. The researchers pro-
pose a framework named INSIDE, which exploits
the eigenvalues of responses’ covariance matrix to
measure the semantic consistency in the dense em-
bedding space (Chen et al., 2024). Internal states
can be considered as the input of the uncertainty es-
timator model so that the model classifies whether
the response is hallucinated or not (Ji et al., 2024).

3 Method

Cleanse estimates the uncertainty by quantifying
the intra-cluster consistency between generations,



Figure 1: Illustration of Cleanse pipeline.

leveraging semantics of responses by employing
sentence-level embeddings and bi-directional clus-
tering. First, we generate multiple outputs and
extract their hidden embeddings from the model.
Then, we cluster those outputs based on their se-
mantic equivalency. Finally, to assess uncertainty,
we compute similarities within and across these
clusters respectively and calculate Cleanse Score.
Specifically, we demonstrate the hidden embed-
dings we use in Section 3.1, the clustering tech-
nique we use in Section 3.2, and how to compute
Cleanse score in Section 3.3.

3.1 Hidden embeddings

We use the last token embedding in the middle
layer of LLM as the output’s hidden embedding,
as prior work suggests it may capture semantic
information effectively (Azaria and Mitchell, 2023).
Here, considering a single hidden embedding as
a d-dimensional vector embedding, we measure
the consistency between these hidden embeddings
using cosine similarity.

3.2 Clustering techniques

We apply the concepts used in clustering validation
by adapting them to be suitable for our study, which
aims for the better and clearer quantification. In
general, the main goal of clustering is to maximize
the inter-cluster distances and minimize the intra-

cluster distances (Ansari et al., 2015) and these two
criteria are utilized in the clustering validation tech-
niques such as Dunn’s Index (Ansari et al., 2015).
Dunn’s Index is defined as the ratio between the
minimum distance across different clusters and the
maximum distance within the same cluster, where
a value closer to 1 indicates better clustering perfor-
mance. Here, we could shift the perspective from
distance to similarity by taking the inverse of the
distance (Ansari et al., 2015). In the perspective
of similarity, better clustering corresponds to high
intra-cluster similarity and low inter-cluster similar-
ity. When we view it from a consistency perspec-
tive rather than clustering validation, it provides
an intuitive insight that high intra-cluster similarity
indicates the presence of many embeddings sharing
equivalent meanings, while high inter-cluster sim-
ilarity suggests the presence of embeddings with
diverse meanings. We perform clustering on the
K outputs to utilize these similarity concepts. We
will further explain what is done with the clustering
results in Section 3.3. The thing is that, our study
aims to compute these similarities and quantify un-
certainty, not to minimize inter-cluster similarity
or maximize intra-cluster similarity. We just got
an intuition from the concept of the distance de-
fined in the clustering, which can be transformed
to similarity.

To ensure that the outputs are clustered based on



their semantic information, we use a fine-tuned NLI
model that maps the input to a high-dimensional
semantic embedding. We utilize the clustering al-
gorithm used in the precedent study (Kuhn et al.,
2023). Here, we introduce only some main con-
cepts for this algorithm. First main concept is that
a pair of outputs is considered entailment only
when both outputs are entail to each other–i.e.,
bi-directional entailment–which ensures the two
outputs truly share the same meaning. Second, re-
searchers concatenated question and its answer in
the form of <Question+Answer>, insisting that the
content of question helps the clustering model com-
prehend the input context better. Finally, the algo-
rithm is computationally efficient for two reasons.
First, the NLI model is substantially smaller than
the main model which generates outputs. While
the main model has 7B and 13B parameters, the
clustering model we used (i.e., nli-deberta-v3-base)
has only 184M parameters, making the clustering
process comparatively lightweight. Additionally,
the number of comparisons required to determine
whether an output should be included in the cluster
is reduced due to the transitive characteristic be-
tween outputs. This transitivity means that a new
output can be added to a certain cluster as long
as it has a bi-directional entailment with at least
one existing member of that cluster, thereby mak-
ing the number of comparisons be small. More
detailed about the algorithm we refer is shown in
Algorithm 1.

Algorithm 1 Bi-directional Entailment Algo-
rithm
Require: context x, set of seqs. {s(2), . . . , s(M)}, NLI

classifierM, set of meanings C = {{s(1)}}
for 2 ≤ m ≤M do

for c ∈ C do
s(c) ← c0 ▷ Compare to existing meanings
left←M(cat(x, s(c), “<g/>”, x, s(m)))

right←M(cat(x, s(m), “<g/>”, x, s(c)))

if left and right are entailment then
c← c ∪ {s(m)} ▷ Add to cluster

end if
end for
C ← C ∪ {s(m)} ▷ New cluster

end for
return C

3.3 Cleanse Score

Here, we define concepts of similarities from Sec-
tion 3.2 for clear understanding. Intra-cluster sim-

Figure 2: Each white circle indicates a single hidden em-
bedding. Edge means the relationship formed between
two embeddings. The red edges represent inter-cluster
edges, while the blue edges represent intra-cluster edges.
Even the red edges are simplified in this illustration, they
represent all possible combinations of embeddings in
the different clusters. There are given weights to all
edges and each of the weight is the computed cosine
similarity between two embeddings.

ilarity refers the sum of all cosine similarities be-
tween embeddings within the same cluster which
is computed by Eq 1. C is the number of clus-
ters, Nk is the number of hidden embeddings in
the k-th cluster, and cosine(ei, ej) is the cosine sim-
ilarity between i-th and j-th hidden embeddings.
Inter-cluster similarity refers that of all cosine sim-
ilarities between embeddings across the different
clusters. Total similarity is the summation of intra-
cluster similarity and inter-cluster similarity which
is computed by Eq. 2 where K is the number of
outputs. Figure 2 clarifies the definition of our
terms.

intra-cluster sim. =
C∑

k=1

Nk−1∑
i=1

Nk∑
j=i+1

cosine(ei, ej)

(1)

total sim. =
K−1∑
i=1

K∑
j=i+1

cosine(ei, ej) (2)

By clustering the outputs based on their seman-
tic equivalency, we can identify how many clus-
ters are formed, which in turn indicates how much
semantically-inconsistent the outputs are. If there
are many clusters, outputs have low consistency
(i.e., high uncertainty). In this case, most edges
are inter-cluster edges, meaning the inter-cluster
similarity is greater than intra-cluster similarity and



it leads to low proportion of intra-cluster similarity
in the total similarity. In contrast, if the number of
clusters is small, outputs have high consistency (i.e.,
low uncertainty) where most edges are intra-cluster
edges. It would lead to high proportion of intra-
cluster similarity in the total similarity. Based on
this intuition, we measure intra-cluster similarity as
the degree of consistency which contributes to the
high consistency because they are the similarities
between embeddings which are semantically equiv-
alent. Inter-cluster similarity is considered as the
penalty for the consistency between outputs as high
inter-cluster similarity indicates that there are many
outputs belonging to different clusters with diver-
gent meanings. We do clustering in Section 3.2 in
order to map outputs to semantic space and com-
pute inter-cluster similarity and intra-cluster simi-
larity separately.

Figure 3: Case 1 has a small number of clusters, result-
ing a high proportion of the intra-cluster similarity in the
total similarity. This case will be classified as correct as
Cleanse Score is sufficiently high as 0.947, indicating
low uncertainty. However, in Case 2, the proportion of
the intra-cluster similarity in the total similarity is low
at 0.409, so this case will be determined to be incorrect
with high uncertainty.

We subtract the proportion of inter-cluster sim-
ilarity in the total similarity from 1, which is the
total proportion. Eq. 3 represents how to com-
pute Cleanse Score using two types of similarities.
There are two cases in Figure 3, which shows how
does Cleanse Score work effectively and clearly in

quantifying consistency.

Cleanse Score = 1− inter-cluster sim.

total sim.

=
intra-cluster sim.

total sim.

(3)

4 Experiment

4.1 Experimental setups
Datasets. We use two representative question-
answering datasets, SQuAD (Rajpurkar et al.,
2016) and CoQA (Reddy et al., 2019). SQuAD
(20.92) has longer ground truth answer spans than
CoQA (13.67) when we compute the average of
the length of golden answer for each dataset in
our experiment. We follow the prompt setting of
SQuAD as presented by Chen et al. (2024) and that
of CoQA as described by Lin et al. (2023).

Models. We conduct experiments by varying
the model in terms of its size, version, and opti-
mized method. We utilize four off-the-shelf mod-
els, LLaMA-7B (Touvron et al., 2023a), LLaMA-
13B (Touvron et al., 2023a), LLaMA2-7B (Touvron
et al., 2023b), and Mistral-7B (Jiang et al., 2023).

Baselines. We compare the performance of
Cleanse Score to four baeslines. Perplexity (Ren
et al., 2023) measures the total uncertainty for
generated sequence using the uncertainty of each
token which consists of the sequence. Length-
normalized entropy (LN-entropy) (Malinin and
Gales, 2020) is similar to perplexity, but it reduces
the bias in quantifying uncertainty by normalizing
the joint log-probabilities with its sequence length.
Lexical similarity (Lin et al., 2022b) is the average
similarities between the answers which are mea-
sured with Rouge-L (Lin, 2004). Cosine score,
computed as Eq. 4 in our study, serves as a baseline
to verify that incorporating inter-cluster similarity
as a penalty helps clarify the boundary between
certain and uncertain answers, thereby improving
uncertainty estimation performance.

cosine score =
2

K(K − 1)

K−1∑
i=1

K∑
j=i+1

cosine(ei, ej)

(4)

Correctness measure. We use Rouge-L (Lin,
2004) as the correctness measure which determines
whether the generation of LLM is correct or not,



Model LLaMA-7B LLaMA-13B LLaMA2-7B Mistral-7B
Dataset SQuAD CoQA SQuAD CoQA SQuAD CoQA SQuAD CoQA

Perplexity
(token-level)

AUC 60.2 66.1 61.4 63.6 63.8 62.2 53.3 57.3
PCC 19.3 27.4 21.8 27.0 25.5 24.3 13.0 21.7

LN-Entropy
(token-level)

AUC 72.3 71.6 74.6 70.8 74.2 70.5 59.3 61.7
PCC 38.9 35.5 43.6 37.1 42.8 34.7 14.8 24.6

Lexical Similarity
(token-level)

AUC 76.9 76.1 78.9 75.6 80.4 76.2 69.0 74.9
PCC 51.2 47.7 54.4 49.1 57.4 48.6 31.4 43.2

Cosine Score
(sentence-level)

AUC 79.6 78.5 81.1 77.7 82.1 79.3 65.9 74.1
PCC 54.7 48.4 57.8 49.3 59.7 50.6 29.1 41.3

Cleanse Score
(sentence-level)

AUC 81.7 79.4 82.8 79.6 83.0 80.1 75.9 80.2
PCC 56.4 47.6 59.6 50.7 61.0 49.7 41.6 47.2

Table 1: Hallucination detection performance for four models and two question-answering datasets. AUROC (AUC)
and PCC are utilized to evaluate the performance of four baselines and Cleanse Score. We use Rouge-L threshold
as 0.7 and deberta-nli-v3-base as a clustering model. Token-level indicates that corresponding metric estimates
uncertainty based on token-probability or lexical form of generations. Sentence-level indicates that corresponding
metric utilizes sentence-level embedding in computing uncertainty. Bolded values indicate the highest scores.

comparing it with the ground truth answer. We
set the threshold as 0.7, which means only gen-
eration s is considered to be correct if s satisfies
L(s, s’) = 1Rouge-L(s,s′)>0.7 for the ground truth
answer s’. We adjust this threshold from 0.5 to
0.9 in our further experiment to demonstrate the
general capability of Cleanse Score.

Evaluation measure. We utilize two evaluation
measures to evaluate the uncertainty estimation per-
formance of four baselines and Cleanse Score. We
use Area Under the Receiver Operating Character-
istic Curve (AUROC) and Pearson Correlation Co-
efficient (PCC). AUROC is a performance metric
for binary classifiers, allowing it to assess whether
an uncertainty estimation metric effectively distin-
guishes between correct and incorrect generations.
PCC measures the correlation between the Rouge-
L score and the consistency level computed by each
metric. Higher AUROC and PCC indicate better
performance.

4.2 Main results
Effectiveness of Cleanse. As shown in Table 1,
Cleanse Score outperforms all four baselines across
LLaMA models and Mistral-7B on the SQuAD and
CoQA datasets when evaluated using AUROC and
PCC. Cleanse Score consistently achieves the high-
est AUROC, with a particularly large margin in
the Mistral-7B settings. In the Mistral-7B model,
Cleanse Score surpasses lexical similarity–the sec-
ond highest performing baseline in Mistral-7B–by
6.9% in SQuAD and 5.3% in CoQA. There is a
tendency that the performance of Cleanse Score

improves in LLaMA-13B and LLaMA2-7B than
LLaMA-7B and Mistral-7B.

On average, cosine score and Cleanse Score,
which both leverage sentence-level embeddings,
show better performance than the baselines based
on token-probability or lexical similarity. This re-
sult supports our discussion in the previous sec-
tion, demonstrating that prioritizing semantic as-
pect over lexical aspect is a reasonable approach in
determining consistency between texts.

Additionally, in Table 1, Cleanse Score outper-
forms cosine score in all cases when evaluated
with AUROC and in most cases when evaluated
with PCC. Through this result, we demonstrate
that our core intuition—clustering multiple outputs
and using the inter-cluster similarity as a penalty
term—successfully enhances uncertainty detection
performance when applied to Cleanse Score. In-
terpreting intra-cluster similarity and inter-cluster
similarity as the degree of consistency and inconsis-
tency respectively enables us to filter hallucinated
cases better than simply by averaging total similar-
ities.

Advantage of Cleanse: Superior hallucination
detection capability even under strict condi-
tions In Figure 4, we compute the AUROC differ-
ence between Cleanse Score and lexical similarity,
which achieves the highest performance among
token-level approaches. The AUROC differences
increase as the threshold of Rouge-L becomes
harder, regardless of the model type and dataset.
In particular, the differences in LLaMA-7B in Fig-



(a) LLaMA-7B (b) LLaMA-13B

(c) LLaMA2-7B (d) Mistral-7B

Figure 4: AUROC difference between Cleanse Score and lexical similarity across four models on two QA datasets,
varying the correctness measure threshold between 0.5 to 0.9. The highest values are in bold.

ure 4a and Mistral-7B in Figure 4d across both
SQuAD/CoQA datasets settings are significant,
achieving 6.4%/6.1% and 8.4%/8.0%. A detailed
analysis of the results shown in Table 3 in Appendix
reveals that, except for the case of Mistral-7B on
the SQuAD dataset, the performance of lexical
similarity either remains the same or decreases as
the Rouge-L threshold increases, whereas the per-
formance of Cleanse Score consistently improves.
In the case of Mistral-7B on the SQuAD dataset,
the performance of lexical similarity also increases
with a higher threshold, but the improvement mar-
gin of Cleanse Score is significantly greater that of
lexical similarity. Here, increasing the threshold
means that the correctness measure becomes more
rigorous and aligns more closely with human eval-
uation. These settings are crucial for certain NLP
tasks that require a precise and accurate correctness
metric. The results demonstrate that Cleanse Score
is robustly applicable in such strict environments
such as question-answering and translation tasks.

Clustering model comparison. The choice of
clustering model is one of the most important fac-
tors in our study as shown in Figure 5. We com-
pare four fine-tuned NLI model, deberta-large-mnli
(He et al., 2020), roberta-large-mnli (Liu et al.,
2019), nli-deberta-v3-base (He et al., 2021) and

nli-deberta-v3-large (He et al., 2021) to find the
optimal clustering model.

We identify the performance of each cluster-
ing model in two ways. First, we compare AU-
ROC when each clustering model is applied to
Cleanse Score. Table 2 shows that AUROC scores
of Cleanse Score using nli-deberta-v3-base are
slightly better than when using other clustering
models. Besides this result, inspired by the intu-
ition from Kuhn et al. (2023), we conduct addi-
tional comparison using the concept mentioned in
Section 3.3. In Figure 5, a clustering model that
forms a small number of clusters for correct an-
swers and a large number of clusters for incorrect
answers can clarify between certain and uncertain
outputs, leading Cleanse Score to predict correct
and incorrect labels better. Based on this idea, the
difference in the number of clusters formed in incor-
rect generations and correct generations can serve
as a metric for evaluating the performance of clus-
tering. The larger the difference is, the better the
model clusters. We calculate the difference be-
tween the average number of clusters for correct
and incorrect generations and show them in paren-
theses in Table 2. The overall differences for nli-
deberta-v3-base are the largest, confirming again
that using nli-deberta-v3-base as a clustering model



Clustering Model deberta-large-mnli roberta-large-mnli nli-deberta-v3-base nli-deberta-v3-large

LLaMA-7B
SQuAD 81.3 (2.71) 80.7 (2.54) 81.7 (2.78) 81.2 (2.63)
CoQA 79.0 (2.49) 78.5 (2.40) 79.4 (2.55) 79.4 (2.45)

LLaMA-13B
SQuAD 82.5 (2.96) 82.3 (2.78) 82.8 (3.03) 82.6 (2.88)
CoQA 79.3 (2.47) 79.0 (2.36) 79.6 (2.53) 79.5 (2.51)

LLaMA2-7B
SQuAD 82.7 (2.92) 82.2 (2.73) 83.0 (2.99) 82.7 (2.86)
CoQA 79.7 (2.52) 79.4 (2.43) 80.1 (2.60) 80.2 (2.57)

Mistral-7B
SQuAD 75.2 (1.84) 74.2 (1.59) 75.9 (1.92) 74.9 (1.75)
CoQA 80.0 (2.57) 79.4 (2.45) 80.2 (2.63) 79.8 (2.55)

Table 2: The results of the Cleanse Score performance comparison, measured by AUROC and the difference between
the average number of clusters of correct and incorrect answers across four distinct clustering techniques when
applied to the methodology (the latter is shown in parentheses). We set Rouge-L threshold as 0.7. Bold values are
the highest.

outperforms other models.

Figure 5: The illustration that shows the importance of
clustering in our approach. For the same query that the
model answers correctly, a well-clustered case results
in few clusters, leading to an accurate Cleanse score.
In contrast, a poorly-clustered case forms a few scat-
tered clusters which yield an incorrect Cleanse score.
This demonstrates that having few clusters for correct
answers and a few clusters for wrong answers is advan-
tageous for clearer hallucination detection.

5 Conclusion

Uncertainty estimation is one of the main solu-
tions in detecting hallucination and prevent it from
becoming critical problem in constructing reliable
and trustworthy LLMs. We propose Cleanse, which
clusters the outputs and computes the proportion of
the intra-cluster similarity in the total similarity to
quantify the consistency. As a result, filtering inter-
cluster similarity as the inconsistency term helps
to classify certain and uncertain generations effec-
tively so that Cleanse perform better than the other
existing approaches. Also, we found that Cleanse

works well even under various correctness measure
settings, which indicates Cleanse is appropriate to
detecting uncertainty in diverse NLP tasks. Ad-
ditionally, by conducting further experiments, we
could identify a clustering model that outperforms
than the others, thereby enhancing the performance
of Cleanse.

Limitations

This approach is limited to white-box LLM as it
requires hidden embedding extracted directly from
the model. However, the performance and use-
fulness of Cleanse is verified through several ex-
periments, other vector embeddings of the outputs
could be used instead of hidden embeddings from
a model, thereby overcome this limitation.
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Appendix

A Additional Experiments

Model LLaMA-7B LLaMA-13B LLaMA2-7B Mistral-7B
Dataset SQuAD CoQA SQuAD CoQA SQuAD CoQA SQuAD CoQA

Lexical
Similarity

0.5 76.8 76.9 79.1 77.1 80.2 77.5 67.6 74.9
0.7 76.9 76.1 78.9 75.6 80.4 76.2 69.0 74.9
0.9 75.7 74.9 77.1 74.5 79.8 74.8 70.7 73.6

Cleanse Score
0.5 80.2 77.4 82.5 78.8 82.9 78.9 72.4 77.7
0.7 81.7 79.4 82.8 79.6 83.0 80.1 75.9 80.2
0.9 82.1 81.0 82.7 80.6 83.7 80.8 79.1 81.6

Table 3: Pattern of AUROC performance changes in lexical similarity and Cleanse Score as Rouge-L threshold
varies across 0.5, 0.7, and 0.9. We use deberta-nli-v3-base for clustering model.
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